Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
J Antimicrob Chemother ; 78(7): 1757-1768, 2023 07 05.
Article in English | MEDLINE | ID: covidwho-20232644

ABSTRACT

OBJECTIVES: To uncover clinical epidemiology, microbiological characteristics and outcome determinants of hospital-acquired bloodstream infections (HA-BSIs) in Turkish ICU patients. METHODS: The EUROBACT II was a prospective observational multicontinental cohort study. We performed a subanalysis of patients from 24 Turkish ICUs included in this study. Risk factors for mortality were identified using multivariable Cox frailty models. RESULTS: Of 547 patients, 58.7% were male with a median [IQR] age of 68 [55-78]. Most frequent sources of HA-BSIs were intravascular catheter [182, (33.3%)] and lower respiratory tract [175, (32.0%)]. Among isolated pathogens (n = 599), 67.1% were Gram-negative, 21.5% Gram-positive and 11.2% due to fungi. Carbapenem resistance was present in 90.4% of Acinetobacter spp., 53.1% of Klebsiella spp. and 48.8% of Pseudomonas spp. In monobacterial Gram-negative HA-BSIs (n = 329), SOFA score (aHR 1.20, 95% CI 1.14-1.27), carbapenem resistance (aHR 2.46, 95% CI 1.58-3.84), previous myocardial infarction (aHR 1.86, 95% CI 1.12-3.08), COVID-19 admission diagnosis (aHR 2.95, 95% CI 1.25-6.95) and not achieving source control (aHR 2.02, 95% CI 1.15-3.54) were associated with mortality. However, availability of clinical pharmacists (aHR 0.23, 95% CI 0.06-0.90) and source control (aHR 0.46, 95% CI 0.28-0.77) were associated with survival. In monobacterial Gram-positive HA-BSIs (n = 93), SOFA score (aHR 1.29, 95% CI 1.17-1.43) and age (aHR 1.05, 95% CI 1.03-1.08) were associated with mortality, whereas source control (aHR 0.41, 95% CI 0.20-0.87) was associated with survival. CONCLUSIONS: Considering high antimicrobial resistance rate, importance of source control and availability of clinical pharmacists, a multifaceted management programme should be adopted in Turkish ICUs.


Subject(s)
Bacteremia , COVID-19 , Cross Infection , Sepsis , Humans , Male , Female , Prospective Studies , Cohort Studies , Cross Infection/microbiology , Intensive Care Units , Risk Factors , Carbapenems , Hospitals , Bacteremia/drug therapy , Bacteremia/epidemiology , Bacteremia/microbiology
2.
Antimicrob Agents Chemother ; 67(3): e0113022, 2023 03 16.
Article in English | MEDLINE | ID: covidwho-2302042

ABSTRACT

We report the first identification of a fluconazole-resistant Candida parapsilosis (FR-Cp) strain in our hospital, which subsequently caused an outbreak involving 17 patients (12 deaths) within a 26-bed French intensive care unit. Microsatellite genotyping confirmed that all FR-Cp isolates belonged to the same clone. Given recent reports of rapid dissemination of these emerging clones, routine testing of azole susceptibility for all Candida parapsilosis isolates should be encouraged, at least in ICU patients.


Subject(s)
Candida parapsilosis , Fluconazole , Humans , Fluconazole/pharmacology , Fluconazole/therapeutic use , Candida parapsilosis/genetics , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Drug Resistance, Fungal/genetics , Microbial Sensitivity Tests , Intensive Care Units , Disease Outbreaks , Hospitals
3.
JAMA Intern Med ; 183(6): 520-531, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2267740

ABSTRACT

Importance: Given the high risk of thrombosis and anticoagulation-related bleeding in patients with hypoxemic COVID-19 pneumonia, identifying the lowest effective dose of anticoagulation therapy for these patients is imperative. Objectives: To determine whether therapeutic anticoagulation (TA) or high-dose prophylactic anticoagulation (HD-PA) decreases mortality and/or disease duration compared with standard-dose prophylactic anticoagulation (SD-PA), and whether TA outperforms HD-PA; and to compare the net clinical outcomes among the 3 strategies. Design, Settings, and Participants: The ANTICOVID randomized clinical open-label trial included patients with hypoxemic COVID-19 pneumonia requiring supplemental oxygen and having no initial thrombosis on chest computer tomography with pulmonary angiogram at 23 health centers in France from April 14 to December 13, 2021. Of 339 patients randomized, 334 were included in the primary analysis-114 patients in the SD-PA group, 110 in the HD-PA, and 110 in the TA. At randomization, 90% of the patients were in the intensive care unit. Data analyses were performed from April 13, 2022, to January 3, 2023. Interventions: Patients were randomly assigned (1:1:1) to receive either SD-PA, HD-PA, or TA with low-molecular-weight or unfractionated heparin for 14 days. Main Outcomes and Measures: A hierarchical criterion of all-cause mortality followed by time to clinical improvement at day 28. Main secondary outcome was net clinical outcome at day 28 (composite of thrombosis, major bleeding, and all-cause death). Results: Among the study population of 334 individuals (mean [SD] age, 58.3 [13.0] years; 226 [67.7%] men and 108 [32.3%] women), use of HD-PA and SD-PA had similar probabilities of favorable outcome (47.3% [95% CI, 39.9% to 54.8%] vs 52.7% [95% CI, 45.2% to 60.1%]; P = .48), as did TA compared with SD-PA (50.9% [95% CI, 43.4% to 58.3%] vs 49.1% [95% CI, 41.7% to 56.6%]; P = .82) and TA compared with HD-PA (53.5% [95% CI 45.8% to 60.9%] vs 46.5% [95% CI, 39.1% to 54.2%]; P = .37). Net clinical outcome was met in 29.8% of patients receiving SD-PA (20.2% thrombosis, 2.6% bleeding, 14.0% death), 16.4% receiving HD-PA (5.5% thrombosis, 3.6% bleeding, 11.8% death), and 20.0% receiving TA (5.5% thrombosis, 3.6% bleeding, 12.7% death). Moreover, HD-PA and TA use significantly reduced thrombosis compared with SD-PA (absolute difference, -14.7 [95% CI -6.2 to -23.2] and -14.7 [95% CI -6.2 to -23.2], respectively). Use of HD-PA significantly reduced net clinical outcome compared with SD-PA (absolute difference, -13.5; 95% CI -2.6 to -24.3). Conclusions and Relevance: This randomized clinical trial found that compared with SD-PA, neither HD-PA nor TA use improved the primary hierarchical outcome of all-cause mortality or time to clinical improvement in patients with hypoxemic COVID-19 pneumonia; however, HD-PA resulted in significantly better net clinical outcome by decreasing the risk of de novo thrombosis. Trial Registration: ClinicalTrials.gov Identifier: NCT04808882.


Subject(s)
COVID-19 , Thrombosis , Male , Humans , Female , Middle Aged , COVID-19/complications , Heparin/administration & dosage , Hemorrhage/chemically induced , Thrombosis/drug therapy , Thrombosis/prevention & control , Thrombosis/chemically induced , Anticoagulants/adverse effects
4.
J Clin Med ; 12(6)2023 Mar 10.
Article in English | MEDLINE | ID: covidwho-2284143

ABSTRACT

SARS-CoV-2 pandemics profoundly modified the process of hospital care [...].

6.
J Clin Med ; 12(4)2023 Feb 06.
Article in English | MEDLINE | ID: covidwho-2236957

ABSTRACT

Introduction: Ventilator-associated pneumonia (VAP) incidence is high among critically ill COVID-19 patients. Its attributable mortality remains underestimated, especially for unresolved episodes. Indeed, the impact of therapeutic failures and the determinants that potentially affect mortality are poorly evaluated. We assessed the prognosis of VAP in severe COVID-19 cases and the impact of relapse, superinfection, and treatment failure on 60-day mortality. Methods: We evaluated the incidence of VAP in a multicenter prospective cohort that included adult patients with severe COVID-19, who required mechanical ventilation for ≥48 h between March 2020 and June 2021. We investigated the risk factors for 30-day and 60-day mortality, and the factors associated with relapse, superinfection, and treatment failure. Results: Among 1424 patients admitted to eleven centers, 540 were invasively ventilated for 48 h or more, and 231 had VAP episodes, which were caused by Enterobacterales (49.8%), P. aeruginosa (24.8%), and S. aureus (22%). The VAP incidence rate was 45.6/1000 ventilator days, and the cumulative incidence at Day 30 was 60%. VAP increased the duration of mechanical ventilation without modifying the crude 60-day death rate (47.6% vs. 44.7% without VAP) and resulted in a 36% increase in death hazard. Late-onset pneumonia represented 179 episodes (78.2%) and was responsible for a 56% increase in death hazard. The cumulative incidence rates of relapse and superinfection were 45% and 39.5%, respectively, but did not impact death hazard. Superinfection was more frequently related to ECMO and first episode of VAP caused by non-fermenting bacteria. The risk factors for treatment failure were an absence of highly susceptible microorganisms and vasopressor need at VAP onset. Conclusions: The incidence of VAP, mainly late-onset episodes, is high in COVID-19 patients and associated with an increased risk of death, similar to that observed in other mechanically ventilated patients. The high rate of VAP due to difficult-to-treat microorganisms, pharmacokinetic alterations induced by renal replacement therapy, shock, and ECMO likely explains the high cumulative risk of relapse, superinfection, and treatment failure.

7.
Clin Microbiol Infect ; 29(7): 942.e1-942.e6, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2210073

ABSTRACT

OBJECTIVES: The COVID-19 pandemic has highlighted the high diagnostic accuracy of the nasopharyngeal swab (including in intensive care unit (ICU) patients). This study aimed to compare nasopharyngeal swab and bronchoalveolar lavage (BAL) results for non-SARS-CoV-2 viruses in patients with suspected pneumonia. METHODS: A retrospective analysis was performed in one French academic hospital on consecutive adults from 2012 to 2018 and tested nasopharyngeal swab and BAL within 24 hours by using multiplex PCR. The agreement in pathogen detection between nasopharyngeal swab and BAL was evaluated. RESULTS: Patients were primarily men (n = 178/276, 64.5%), with a median age of 60 years (IQR: 51-68 years). Of the 276 patients, 169 (61%) were admitted to the ICU for acute respiratory distress. We detected at least one respiratory virus in 34.4% of the nasopharyngeal swabs (n = 95/276) and 29.0% of BAL (n = 80/276). Two or more viruses were detected in 2.5% of the nasopharyngeal swabs (n = 7/276) and 2.2% of BAL (n = 6/276). Rhinovirus/enteroviruses were the most frequently detected viral group in 10.2% (n = 29/285) of the nasopharyngeal swabs and 9.5% (n = 27/285) of BAL, followed by influenza A, detected in 5.6% (n = 16/285) of the nasopharyngeal swabs and 4.9% (n = 14/285) of BAL. Overall agreement was 83.7% (n = 231/276 (95% CI [78.7%, 87.7%])) (i.e. same pathogen or pathogen combination was identified in the nasopharyngeal swab and BAL for 231 patients). Rhinovirus/enterovirus (n = 29/231) and respiratory syncytial virus (n = 13/231) had the lowest agreement of 62.1% (n = 18/29 (95% CI [42.4%-78.7%])) and 61.5% (n = 8/13 (95% CI [32.3%-84.9%])), respectively). CONCLUSIONS: There was a good agreement between nasopharyngeal swabs and BAL in detecting respiratory viruses among adult patients with suspected pneumonia. However, these data still encourage BAL in the case of a negative nasopharyngeal swab.


Subject(s)
COVID-19 , Viruses , Male , Humans , Adult , Middle Aged , Aged , Retrospective Studies , Pandemics , Bronchoalveolar Lavage , Nasopharynx
8.
PLoS One ; 18(1): e0278882, 2023.
Article in English | MEDLINE | ID: covidwho-2197059

ABSTRACT

Before the availability of vaccines, many countries have resorted multiple times to drastic social restrictions to prevent saturation of their health care system, and to regain control over an otherwise exponentially increasing COVID-19 pandemic. With the advent of data-sharing, computational approaches are key to efficiently control a pandemic with non-pharmaceutical interventions (NPIs). Here we develop a data-driven computational framework based on a time discrete and age-stratified compartmental model to control a pandemic evolution inside and outside hospitals in a constantly changing environment with NPIs. Besides the calendrical time, we introduce a second time-scale for the infection history, which allows for non-exponential transition probabilities. We develop inference methods and feedback procedures to successively recalibrate model parameters as new data becomes available. As a showcase, we calibrate the framework to study the pandemic evolution inside and outside hospitals in France until February 2021. We combine national hospitalization statistics from governmental websites with clinical data from a single hospital to calibrate hospitalization parameters. We infer changes in social contact matrices as a function of NPIs from positive testing and new hospitalization data. We use simulations to infer hidden pandemic properties such as the fraction of infected population, the hospitalisation probability, or the infection fatality ratio. We show how reproduction numbers and herd immunity levels depend on the underlying social dynamics.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Pandemics/prevention & control , France
10.
BMC Med Res Methodol ; 22(1): 321, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2162296

ABSTRACT

BACKGROUND: To improve the efficiency of clinical trials, leveraging external data on control and/or treatment effects, which is almost always available, appears to be a promising approach. METHODS: We used data from the experimental arm of the Covidicus trial evaluating high-dose dexamethasone in severely ill and mechanically ventilated COVID-19 patients, using published data from the Recovery trial as external data, to estimate the 28-day mortality rate. Primary approaches to deal with external data were applied. RESULTS: Estimates ranged from 0.241 ignoring the external data up to 0.294 using hierarchical Bayesian models. Some evidence of differences in mortality rates between the Covidicus and Recovery trials were observed, with an matched adjusted odds ratio of death in the Covidicus arm of 0.41 compared to the Recovery arm. CONCLUSIONS: These indirect comparisons appear sensitive to the method used. None of those approaches appear robust enough to overcome randomized clinical trial data. TRIAL REGISTRATION: Covidicus Trial: NCT04344730, First Posted: 14/04/2020; Recovery trial: NCT04381936.

12.
Biomedicines ; 10(10)2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2081923

ABSTRACT

BACKGROUND: Few data are available on the impact of bacterial pulmonary co-infection (RespCoBact) during COVID-19 (CovRespCoBact). The aim of this study was to compare the prognosis of patients admitted to an ICU for influenza pneumonia and for SARS-CoV-2 pneumonia with and without RespCoBact. METHODS: This was a multicentre (n = 11) observational study using the Outcomerea© database. Since 2008, all patients admitted with influenza pneumonia or SARS-CoV-2 pneumonia and discharged before 30 June 2021 were included. Risk factors for day-60 death and for ventilator-associated-pneumonia (VAP) in patients with influenza pneumonia or SARS-CoV-2 pneumonia with or without RespCoBact were determined. RESULTS: Of the 1349 patients included, 157 were admitted for influenza and 1192 for SARS-CoV-2. Compared with the influenza patients, those with SARS-CoV-2 had lower severity scores, were more often under high-flow nasal cannula, were less often under invasive mechanical ventilation, and had less RespCoBact (8.2% for SARS-CoV-2 versus 24.8% for influenza). Day-60 death was significantly higher in patients with SARS-CoV-2 pneumonia with no increased risk of mortality with RespCoBact. Patients with influenza pneumonia and those with SARS-CoV-2 pneumonia had no increased risk of VAP with RespCoBact. CONCLUSIONS: SARS-CoV-2 pneumonia was associated with an increased risk of mortality compared with Influenza pneumonia. Bacterial pulmonary co-infections on admission were not associated with patient survival rates nor with an increased risk of VAP.

13.
Crit Care ; 26(1): 319, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2079528

ABSTRACT

BACKGROUND: The study aimed to describe the epidemiology and outcomes of hospital-acquired bloodstream infections (HABSIs) between COVID-19 and non-COVID-19 critically ill patients. METHODS: We used data from the Eurobact II study, a prospective observational multicontinental cohort study on HABSI treated in ICU. For the current analysis, we selected centers that included both COVID-19 and non-COVID-19 critically ill patients. We performed descriptive statistics between COVID-19 and non-COVID-19 in terms of patients' characteristics, source of infection and microorganism distribution. We studied the association between COVID-19 status and mortality using multivariable fragility Cox models. RESULTS: A total of 53 centers from 19 countries over the 5 continents were eligible. Overall, 829 patients (median age 65 years [IQR 55; 74]; male, n = 538 [64.9%]) were treated for a HABSI. Included patients comprised 252 (30.4%) COVID-19 and 577 (69.6%) non-COVID-19 patients. The time interval between hospital admission and HABSI was similar between both groups. Respiratory sources (40.1 vs. 26.0%, p < 0.0001) and primary HABSI (25.4% vs. 17.2%, p = 0.006) were more frequent in COVID-19 patients. COVID-19 patients had more often enterococcal (20.5% vs. 9%) and Acinetobacter spp. (18.8% vs. 13.6%) HABSIs. Bacteremic COVID-19 patients had an increased mortality hazard ratio (HR) versus non-COVID-19 patients (HR 1.91, 95% CI 1.49-2.45). CONCLUSIONS: We showed that the epidemiology of HABSI differed between COVID-19 and non-COVID-19 patients. Enterococcal HABSI predominated in COVID-19 patients. COVID-19 patients with HABSI had elevated risk of mortality. Trial registration ClinicalTrials.org number NCT03937245 . Registered 3 May 2019.


Subject(s)
COVID-19 , Cross Infection , Sepsis , Aged , Humans , Male , Cohort Studies , COVID-19/epidemiology , Critical Illness/epidemiology , Cross Infection/epidemiology , Intensive Care Units , Sepsis/epidemiology
14.
Nat Commun ; 13(1): 6025, 2022 10 12.
Article in English | MEDLINE | ID: covidwho-2062212

ABSTRACT

Infection with SARS-CoV-2 variant Omicron is considered to be less severe than infection with variant Delta, with rarer occurrence of severe disease requiring intensive care. Little information is available on comorbid factors, clinical conditions and specific viral mutational patterns associated with the severity of variant Omicron infection. In this multicenter prospective cohort study, patients consecutively admitted for severe COVID-19 in 20 intensive care units in France between December 7th 2021 and May 1st 2022 were included. Among 259 patients, we show that the clinical phenotype of patients infected with variant Omicron (n = 148) is different from that in those infected with variant Delta (n = 111). We observe no significant relationship between Delta and Omicron variant lineages/sublineages and 28-day mortality (adjusted odds ratio [95% confidence interval] = 0.68 [0.35-1.32]; p = 0.253). Among Omicron-infected patients, 43.2% are immunocompromised, most of whom have received two doses of vaccine or more (85.9%) but display a poor humoral response to vaccination. The mortality rate of immunocompromised patients infected with variant Omicron is significantly higher than that of non-immunocompromised patients (46.9% vs 26.2%; p = 0.009). In patients infected with variant Omicron, there is no association between specific sublineages (BA.1/BA.1.1 (n = 109) and BA.2 (n = 21)) or any viral genome polymorphisms/mutational profile and 28-day mortality.


Subject(s)
COVID-19 , SARS-CoV-2 , Critical Illness , Humans , Phenotype , Prospective Studies , SARS-CoV-2/genetics
15.
Crit Care ; 26(1): 300, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2053943

ABSTRACT

BACKGROUND: The composition of the digestive microbiota may be associated with outcome and infections in patients admitted to the intensive care unit (ICU). The dominance by opportunistic pathogens (such as Enterococcus) has been associated with death. However, whether this association remains all throughout the hospitalization are lacking. METHODS: We performed a single-center observational prospective cohort study in critically ill patients admitted with severe SARS-CoV-2 infection. Oropharyngeal and rectal swabs were collected at admission and then twice weekly until discharge or death. Quantitative cultures for opportunistic pathogens were performed on oropharyngeal and rectal swabs. The composition of the intestinal microbiota was assessed by 16S rDNA sequencing. Oropharyngeal and intestinal concentrations of opportunistic pathogens, intestinal richness and diversity were entered into a multivariable Cox model as time-dependent covariates. The primary outcome was death at day 90. RESULTS: From March to September 2020, 95 patients (765 samples) were included. The Simplified Acute Physiology Score 2 (SAPS 2) at admission was 33 [24; 50] and a Sequential Organ Failure Assessment score (SOFA score) at 6 [4; 8]. Day 90 all-cause mortality was 44.2% (42/95). We observed that the oropharyngeal and rectal concentrations of Enterococcus spp., Staphylococcus aureus and Candida spp. were associated with a higher risk of death. This association remained significant after adjustment for prognostic covariates (age, chronic disease, daily antimicrobial agent use and daily SOFA score). A one-log increase in Enterococcus spp., S. aureus and Candida spp. in oropharyngeal or rectal swabs was associated with a 17% or greater increase in the risk of death. CONCLUSION: We found that elevated oropharyngeal/intestinal Enterococcus spp. S. aureus and Candida spp. concentrations, assessed by culture, are associated with mortality, independent of age, organ failure, and antibiotic therapy, opening prospects for simple and inexpensive microbiota-based markers for the prognosis of critically ill SARS-CoV-2 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Anti-Bacterial Agents , Candida , Critical Illness , DNA, Ribosomal , Humans , Intensive Care Units , Prospective Studies , Staphylococcus aureus
16.
Curr Opin Infect Dis ; 35(6): 605-613, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2051764

ABSTRACT

PURPOSE OF REVIEW: SARS-CoV-2 deeply modified the risk of bacterial infection, bacterial resistance, and antibiotic strategies. This review summarized what we have learned. RECENT FINDINGS: During the COVID-19 pandemic, we observed an increase in healthcare-acquired infection and multidrug-resistant organism-related infection, triggered by several factors: structural factors, such as increased workload and ongoing outbreaks, underlying illnesses, invasive procedures, and treatment-induced immunosuppression. The two most frequently healthcare-acquired infections described in patients hospitalized with COVID-19 were bloodstream infection, related or not to catheters, health-acquired pneumonia (in ventilated or nonventilated patients). The most frequent species involved in bacteremia were Gram-positive cocci and Gram-negative bacilli in health-acquired pneumonia. The rate of Gram-negative bacilli is particularly high in late-onset ventilator-associated pneumonia, and the specific risk of Pseudomonas aeruginosa- related pneumonia increased when the duration of ventilation was longer than 7 days. A specificity that remains unexplained so far is the increase in enterococci bacteremia. SUMMARY: The choice of empiric antibiotimicrobials depends on several factors such as the site of the infection, time of onset and previous length of stay, previous antibiotic therapy, and known multidrug-resistant organism colonization. Pharmacokinetics of antimicrobials could be markedly altered during SARS-CoV-2 acute respiratory failure, which should encourage to perform therapeutic drug monitoring.


Subject(s)
Bacteremia , COVID-19 Drug Treatment , Cross Infection , Gram-Negative Bacterial Infections , Humans , Gram-Negative Bacterial Infections/drug therapy , Cross Infection/drug therapy , Cross Infection/epidemiology , Cross Infection/microbiology , Pandemics , SARS-CoV-2 , Gram-Negative Bacteria , Bacteremia/drug therapy , Bacteremia/epidemiology , Bacteremia/microbiology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Risk Assessment
17.
Ann Intensive Care ; 12(1): 88, 2022 Sep 26.
Article in English | MEDLINE | ID: covidwho-2043138

ABSTRACT

BACKGROUND: Augmented renal clearance (ARC) remains poorly evaluated in ICU. The objective of this study is to provide a full description of ARC in ICU including prevalence, evolution profile, risk factors and outcomes. METHODS: This was a retrospective, single-center, observational study. All the patients older than 18 years admitted for the first time in Medical ICU, Bichat, University Hospital, APHP, France, between January 1, 2017, and November 31, 2020 and included into the Outcomerea database with an ICU length of stay longer than 72 h were included. Patients with chronic kidney disease were excluded. Glomerular filtration rate was estimated each day during ICU stay using the measured creatinine renal clearance (CrCl). Augmented renal clearance (ARC) was defined as a 24 h CrCl greater than 130 ml/min/m2. RESULTS: 312 patients were included, with a median age of 62.7 years [51.4; 71.8], 106(31.9%) had chronic cardiovascular disease. The main reason for admission was acute respiratory failure (184(59%)) and 196(62.8%) patients had SARS-COV2. The median value for SAPS II score was 32[24; 42.5]; 146(44%) and 154(46.4%) patients were under vasopressors and invasive mechanical ventilation, respectively. The overall prevalence of ARC was 24.6% with a peak prevalence on Day 5 of ICU stay. The risk factors for the occurrence of ARC were young age and absence of cardiovascular comorbidities. The persistence of ARC during more than 10% of the time spent in ICU was significantly associated with a lower risk of death at Day 30. CONCLUSION: ARC is a frequent phenomenon in the ICU with an increased incidence during the first week of ICU stay. Further studies are needed to assess its impact on patient prognosis.

18.
Antibiotics (Basel) ; 11(9)2022 Aug 29.
Article in English | MEDLINE | ID: covidwho-2005917

ABSTRACT

Mid-regional proadrenomedullin (MR-proADM) protects against endothelial permeability and has been associated with prognosis in bacterial sepsis. As endothelial dysfunction is central in the pathophysiology of severe SARS-CoV-2 infection, we sought to evaluate MR-proADM both as a prognostic biomarker and as a marker of bacterial superinfection. Consecutive patients admitted to the ICU for severe SARS-CoV-2 pneumonia were prospectively included and serum was bio-banked on days 1, 3, and 7. MR-proADM levels were measured blindly from clinical outcomes in batches at the end of follow-up. Among the 135 patients included between April 2020 and May 2021, 46 (34.1%) had died at day 60. MR-proADM levels on days 1, 3, and 7 were significantly higher in day-60 non-survivors. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve (0.744, p < 0.001) of day-1 MR-proADM compared favorably with the AUC ROC curve of day-1 procalcitonin (0.691, p < 0.001). Serial MR-proADM measurements on days 3 and 7 may add prognostic information. After adjusting for CRP, LDH, and lymphocyte values, day-1 MR-proADM remained significantly associated with day-60 mortality. MR-proADM concentrations were significantly higher in patients with respiratory superinfections (on days 3 and 7) and bloodstream infections (on days 1, 3, and 7) than in patients without infection. Our results suggest that MR-proADM is a good predictor of outcome in severe SARS-CoV-2 infection and could be a useful tool to assess bacterial superinfection in COVID-19 patients.

19.
JAMA Intern Med ; 182(9): 906-916, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-1919150

ABSTRACT

Importance: The benefit of high-dose dexamethasone and oxygenation strategies vs standard of care for patients with severe acute hypoxemic respiratory failure (AHRF) caused by COVID-19 pneumonia is debated. Objectives: To assess the benefit of high-dose dexamethasone compared with standard of care dexamethasone, and to assess the benefit of high-flow nasal oxygen (HFNo2) or continuous positive airway pressure (CPAP) compared with oxygen support standard of care (o2SC). Design, Setting, and Participants: This multicenter, placebo-controlled randomized clinical trial was conducted in 19 intensive care units (ICUs) in France from April 2020 to January 2021. Eligible patients were consecutive ICU-admitted adults with COVID-19 AHRF. Randomization used a 2 × 3 factorial design for dexamethasone and oxygenation strategies; patients not eligible for at least 1 oxygenation strategy and/or already receiving invasive mechanical ventilation (IMV) were only randomized for dexamethasone. All patients were followed-up for 60 days. Data were analyzed from May 26 to July 31, 2021. Interventions: Patients received standard dexamethasone (dexamethasone-phosphate 6 mg/d for 10 days [or placebo prior to RECOVERY trial results communication]) or high-dose dexamethasone (dexamethasone-phosphate 20 mg/d on days 1-5 then 10 mg/d on days 6-10). Those not requiring IMV were additionally randomized to o2SC, CPAP, or HFNo2. Main Outcomes and Measures: The main outcomes were time to all-cause mortality, assessed at day 60, for the dexamethasone interventions, and time to IMV requirement, assessed at day 28, for the oxygenation interventions. Differences between intervention groups were calculated using proportional Cox models and expressed as hazard ratios (HRs). Results: Among 841 screened patients, 546 patients (median [IQR] age, 67.4 [59.3-73.1] years; 414 [75.8%] men) were randomized between standard dexamethasone (276 patients, including 37 patients who received placebo) or high-dose dexamethasone (270 patients). Of these, 333 patients were randomized among o2SC (109 patients, including 56 receiving standard dexamethasone), CPAP (109 patients, including 57 receiving standard dexamethasone), and HFNo2 (115 patients, including 56 receiving standard dexamethasone). There was no difference in 60-day mortality between standard and high-dose dexamethasone groups (HR, 0.96 [95% CI, 0.69-1.33]; P = .79). There was no significant difference for the cumulative incidence of IMV criteria at day 28 among o2 support groups (o2SC vs CPAP: HR, 1.08 [95% CI, 0.71-1.63]; o2SC vs HFNo2: HR, 1.04 [95% CI, 0.69-1.55]) or 60-day mortality (o2SC vs CPAP: HR, 0.97 [95% CI, 0.58-1.61; o2SC vs HFNo2: HR, 0.89 [95% CI, 0.53-1.47]). Interactions between interventions were not significant. Conclusions and Relevance: In this randomized clinical trial among ICU patients with COVID-19-related AHRF, high-dose dexamethasone did not significantly improve 60-day survival. The oxygenation strategies in patients who were not initially receiving IMV did not significantly modify 28-day risk of IMV requirement. Trial Registration: ClinicalTrials.gov Identifier: NCT04344730; EudraCT: 2020-001457-43.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Respiratory Insufficiency , Adult , Aged , COVID-19/therapy , Dexamethasone/therapeutic use , Female , Humans , Intensive Care Units , Male , Middle Aged , Oxygen , Phosphates , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , SARS-CoV-2
20.
Sci Rep ; 12(1): 638, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1900549

ABSTRACT

COVID-19 can cause acute respiratory distress syndrome, leading to death in many individuals. Evidence of a deleterious role of the innate immune system is accumulating, but the precise mechanisms involved remain unclear. In this study, we investigated the links between circulating innate phagocytes and severity in COVID-19 patients. We performed in-depth phenotyping of neutrophil and monocyte subpopulations and measured soluble activation markers in plasma. Additionally, anti-microbial functions (phagocytosis, oxidative burst, and NETosis) were evaluated on fresh cells from patients. Neutrophils and monocytes had a strikingly disturbed phenotype, and elevated concentrations of activation markers (calprotectin, myeloperoxidase, and neutrophil extracellular traps) were measured in plasma. Critical patients had increased CD13low immature neutrophils, LOX-1 + and CCR5 + immunosuppressive neutrophils, and HLA-DRlow downregulated monocytes. Markers of immature and immunosuppressive neutrophils were strongly associated with severity. Moreover, neutrophils and monocytes of critical patients had impaired antimicrobial functions, which correlated with organ dysfunction, severe infections, and mortality. Together, our results strongly argue in favor of a pivotal role of innate immunity in COVID-19 severe infections and pleads for targeted therapeutic options.


Subject(s)
COVID-19/immunology , Immunity, Innate , Immunocompromised Host , Adult , Aged , Female , Humans , Male , Middle Aged , Monocytes/immunology , Neutrophils/immunology , Phagocytes/immunology , Prognosis , Severity of Illness Index , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL